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* Impact of drive cycle on
component sizes and energy
management strategy (Wipke,
et. al. EVS-18)

— Optimizing for a specific drive
cycle leads to significantly
different vehicle designs

— Designing for NEDC provides
reasonably robust design
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e Previous study assumption:

» Assumed that the fuel cell system would be able to

respond from 10 to 90% power in 2 seconds (DOE
2004 target)

 This study varies the response time/rate of the FC
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Technology Status

FTT paper by Honeywell lists a current O to full
power transient capability of 20 seconds
— Mainly an issue of inlet stream conditioning

* Flow

 Temperature

* Pressure

e Humidity

2000 SAE Congress paper prowdes data showmg

Study by L. Potter (Johnson Matthey) for the ETSU

— fuel cell transient response capability influential on the
component sizing in a hybrid transit bus application
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To be answered by this study:

* How will the optimized vehicle component sizes
and control strategy vary with improvements in the
transient response time?

— Hybridized vehicle
— Neat fuel cell vehicle

« Also, if the fast response time target is relaxed, how
could this benefit FC vehicle design (size, cost,

etc )
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What was done .

— Sweep transient response rate parameter
» Set points: 0, 2, 5, 10, 20, 40s
* Three drive cycles Time
— City/Highway Composite (standard benchmark)

— USO06 (aggressive - expected to be more
influential)

— NEDC (provides robust designs)
* Venhicles

— Hybrid

— Non-hybrid (0, 2, 5, and 7s only)

» Greater than 7s provides unreasonable
solutions

Power

« Starting from previous (EVS-18) results, _/—
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Y Using ADVISOR in an Optimization Loop
< . as both the Function Call and Constraint Evaluation

~5-10 drive cycle iterations
for SOC balancing

Objective
Function

OpumIZauen
Tools

Function

. A g(x)
Typical optimization loops
this 100-2000 times . Acceleration

» Gradeability
» SOC balanced
* Must follow cycle ..
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g " Three Main ADVISOR GUI Screens —
> ‘GUI-Free’ version Used for Optimization

Vehicle Input

ADVISOR 2002
Advanced Vehicle Simulator

Results

Ot 0
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Optimization
- Problem Definition

Objective )
— Maximize fuel economy of fuel cell powered hybrid electric SUV
Constraints
— Performance equivalent to comparable conventional vehicle
* 6 inequality constraints, such as accel., grade, SOC balanced...
8 Total Design Variables

— 4 Component Characteristics — 4 Control Strategy
 fuel cell peak power » low power fuel cell
- traction motor peak power cut-off
power * high power fuel cell
* number of battery power cut-off
modules * minimum fuel cell off
« capacity of battery time
modules « charge power set point
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Vehicle Type

Rear wheel drive mid-size SUV
(i.e. Jeep Grand Cherokee)

Baseline Conventional
Vehicle Mass

1788 kg

HEV Glider Mass
(No Powertrain)

1202 kg

Rolling Resistance

0.012

Wheel Radius

0.343 m

Frontal Area

2.66 m?

Coefficient of
Aerodynamic Drag

0.44
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Component

Description

Fuel Converter

Efficiency vs. net power
performance data for

52 kW (net) Honeywell
pressurized fuel cell system

Motor/Controller

AC induction motor
developed by Virginia Power
Technologies

83 kW @ 275 Vmin

Energy Storage System

Ovonic 45 Ah NiMH battery
modules
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== Fuel Cell Net Power=# Motor Peak Power Battery Power
=>¢= Battery Capacity =€ Battery Energy
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~ Variation of Control Strategy Parameters
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’*’ Comparlson of Hybrid, Neat, and
- Conventional Vehicles
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" Distribution of Power During Acceleration
Event for Hybrid Fuel Cell SUV
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" Fuel Cell System in FCEV with Slow
TranS|ent Response (5s) on US06 Cycle
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! Operating Characteristics of Hybrids Optimized
For Combined City/Highway Driving
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Optimization of Fuel Cell Vehicle Design
des Insight into System Trade-offs

« Determined that derivative-free
optimization algorithms necessary
for complex design space of HEVs

Optimizing Energy Management Strategy and Degres of
Hybridization for a Hydrogen Fuel Cell SU
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. | - Drive cycle influences optimal
' degree of hybridization and control
Vehicle System Impacts of Fuel C;g:)f;:?gggzzi;i?; pa ra mete rS

i Lo — NEDC provides robust design
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Fuel cell transient response

vehicle

* An optimized hybrid design can
nullify the effects of fuel cell
transient response
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Areas for Further Exploration

Fuel cell system start-up, shut-down, and idling

« Energy storage technology selection for fuel cell
vehicles

* Include multiple objectives
— cost, volume, durability, ...

* Vehicle system optimization with respect to other
fuel cell system design attributes
— specific cost, specific power, power density, ...
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~ Summary and Conclusions

« The fuel cell system characteristics affect both the
optimal control and component sizing with respect
to fuel economy

« Optimal hybrid vehicle scenarios can be derived
that take advantage of, or compensate for, fuel cell
system operating characteristics (such as response
time)

* Fast transient response
capability will be critical
for neat fuel cell vehicles
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